

Products: R&S[®]DVM50, R&S[®]DVM100, R&S[®]DVM120, R&S[®]DVM400

DVB-H Measurements with the R&S[®]DVM Basics and Application

Application Note

The DVB-H standard is a specification for bringing television broadcast services to handheld receivers. In order to save battery power, data for a specific service is transmitted in short bursts. This type of transmission utilizes special techniques within the transport stream.

The R&S[®]DVM offers a wide range of functions to analyze the characteristics of the DVB-H transport stream. This document describes the characteristics of the DVB-H transport stream and shows how the R&S[®]DVM can be used for efficient analysis in research and development, production, and broadcasting.

1	Overview	
2	Requirements	
3	Introduction	
4	DVB-H (ETSI EN 302 304) – General Overview	
	RF characteristics (improved mobile reception)	4
	Time slicing at the transport stream level (power save function)	4
5	The DVB-H Transport Stream (ETSI EN 301 192, ISO/IEC 13818-	
6)	6	
	Multiprotocol encapsulation (MPE)	6
	Multiprotocol encapsulation – forward error correction (MPE-	
	FEC)	
	MPE signaling	8
6	R&S [®] DVM Analysis of DVB-H Signaling	. 10
	Displaying DVB-H contents	. 10
	Interpretation of the PMT table	
	Interpretation of the INT table	
	Interpretation of the NIT table	. 12
7	Time-Slicing - R&S [®] DVM DVB-H Time Slice Analyzer	
	Measurement parameters	
	Burst Timing	
	MPE-FEC analysis	. 15
8	Multiprotocol Encapsulation (MPE) – R&S [®] DVM Data Broadcast	
An	alysis	
	Data broadcast analysis – GUI	
	Protocol (1)	. 21
	Content (2)	. 21
	Content Details (3)	. 21
	Data broadcast analysis features	. 21
	Overview	
	Interpreter	. 22
	Raw data	
9	Abbreviations	. 24
10	Bibliography	
	Additional Information	
12	Ordering Information	. 26

1 Overview

The DVB-H standard is a specification for bringing television broadcast services to handheld receivers. In order to save battery power, data for a specific service is transmitted in short bursts. This type of transmission utilizes special techniques within the transport stream.

The R&S[®]DVM offers a wide range of functions to analyze the characteristics of the DVB-H transport stream. This document describes the characteristics of the DVB-H transport stream and shows how the R&S[®]DVM can be used for efficient analysis in research and development, production, and broadcasting.

2 Requirements

To access the DVB-H analysis functionality, your $R\&S^{\$}DVM$ device must have the data broadcast analysis functionality ($R\&S^{\$}DVM400$: DVM-B1, $R\&S^{\$}DVM50/100/120$: DVM-K11) installed.

3 Introduction

For more than 100 years (since the advent of the automobile), the concept of "mobility" has been synonymous with individual independence.

The onset of the Internet era in the late 20th century and the global spread of the mobile telephone have also helped to shape expectations, which, for today's consumers, are reachability, information, and individuality – anywhere, anytime. In the early days, mobile phones were "only" expected to ensure that the user could always be reached by telephone, but expectations are now trending more and more toward multimedia content.

Over the course of the past decade, broadcasting responded to the demand for more information and entertainment by introducing digital standards which allow several broadcasts/services to be carried in one frequency channel. However, these technologies pertain primarily to an extension of conventional stationary reception. See [2] for more information.

DVB for mobile devices was hampered by a lack of absolutely essential power saving features, as well as by a lack of practicable implementations for mobile reception. To meet those challenges, the European Telecommunication Standardization Union developed the DVB-H standard (where H stands for handheld).

4 DVB-H (ETSI EN 302 304) – General Overview

As noted above, this application note will discuss baseband analysis. For the sake of completeness, this section will briefly touch upon the details of the standard's RF component. For further details and procedures for testing the RF component of DVB-H, see [1].

RF characteristics (improved mobile reception)

The speed of non-stationary terminals differs from null. This speed component results in the Doppler effect. The Doppler effect describes the fact that movement (of the transmitter or receiver) causes a frequency (f) to shift (Δ f), so that the resulting frequency on the other side (transmitter or receiver) is f + Δ f.

In multicarrier modulations such as DVB-T (coded orthogonal frequency division multiplexing, or COFDM for short), where the standard calls for either 2048 (2k mode) or 8192 (8k mode) carriers, modes with a lower number of carriers are less affected by the Doppler effect because the subcarrier spacing is wider.

Reduced symbol length is a side effect in COFDM with a smaller number of carriers. The reduced symbol length results in a reduction of the guard interval which was introduced for multipath reception, and a higher transmitter density (see single frequency network [2]) is required. That, in turn, results in higher costs to the network operators. However, the 2k mode also allows application of better error protection measures (in-depth interleaving).

For DVB-H, the 4k mode was added to the 2k and 8k modes. The 4k mode is the middle ground between improved mobile reception properties, error protection (in-depth interleaving), and transmitter density.

Time slicing at the transport stream level (power save function)

As noted above, receivers manufactured to conventional standards (DVB-T) require too much energy to be practical for battery-operated devices. So DVB-H introduced the time slicing approach in order to reduce the power consumption of mobile, handheld devices.

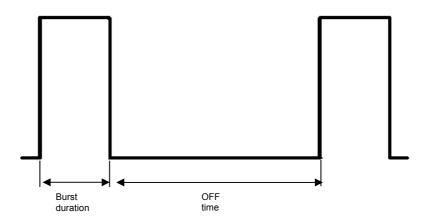


Fig. 1: Time slicing (schematic)

Time slicing is the transmission of data for a specific service in bursts rather than in a continuous stream (the TS is still continuous). Responding to signals in the transport stream, the receiver switches on only when a data burst is being transmitted. The receiver is then turned off during the OFF time. This results in a considerable reduction of the receiver's power requirements.

The R&S[®]DVM provides efficient and powerful analysis and monitoring functions which allow analysis of time slicing and of the transmitted data.

In order to illustrate the broad range of functions provided by the $R\&S^{\circledast}DVM,$ the following section will discuss the underlying details of DVB-H baseband.

5 The DVB-H Transport Stream (ETSI EN 301 192, ISO/IEC 13818-6)

This standard utilizes the Internet Protocol (IP) in order to flexibly accommodate DVB-H program contents in the different transport layers.

Multiprotocol encapsulation (MPE)

In DVB-H, multiprotocol encapsulation is used to carry IP packets over the MPEG-2 transport stream.

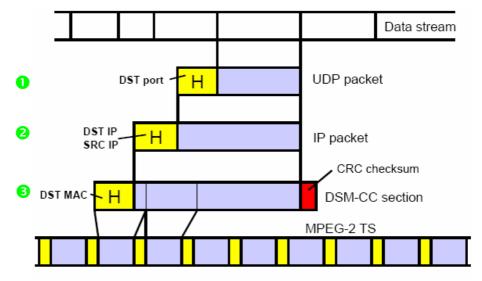


Fig. 2: Multiprotocol encapsulation (MPE) [1]

Multiprotocol encapsulation is a process in which data is integrated in data packets with different specifications so that it can be transported in different transport systems.

For DVB-H, MPE encapsulation is handled as follows:

• The data to be transmitted is bundled in user datagram protocol (UDP) packets (UDP packets only include the destination port in their header information since the protocol does not return an acknowledgment of receipt).

The UDP packets are then packed in IP packets which do include the sender's and recipient's IP addresses in their header information.

In the third and last step, the resulting IP packets are integrated in data storage media command and control (DSM-CC) sections (table id = 0x0E). These sections are defined in ISO/IEC 13818-6.

The header of a DSM-CC packet contains the following information:

The recipient MAC address can be used as a selection criterion for addressing a specific service. However, only the last two bytes (5, 6) are used for this. This type of signaling can be used if different programs are transmitted in packets with the same PID. Bytes 1 to 4 are used to signal time slicing (see the preceding section). In DVB-H, those DSM-CC sections are referred to as MPE sections.

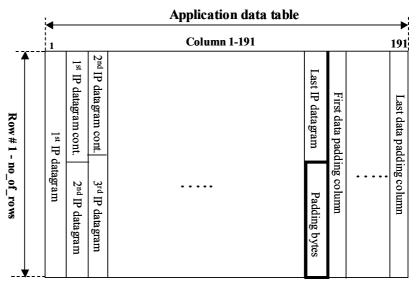


Fig. 4: User data in the application data table (MPE sections) [4]

The application data table (MPE section) consists of 191 columns with a maximum of 1024 rows. The IP datagrams (also called IP packets) constitute the payload of the MPE sections. Starting with the first byte in the upper left-hand corner (first cell), the IP datagrams are inserted column by column. The bytes are strung together as shown in Fig. 4. After all available IP datagrams have been inserted in the MPE section, the remaining cells are filled with zero bytes (which are also called padding bytes).

Multiprotocol encapsulation – forward error correction (MPE-FEC)

The DVB-H standard defines MPE-FEC sections (multiprotocol encapsulation – forward error correction) so that error-free IP datagrams for clean decoding can be achieved in spite of high packet losses which can occur, for instance, if the receiver moves at too high a speed.

MPE-FEC sections are normal MPE sections with Reed-Solomon encoding which then, by means of the resulting overhead (25% more), permits error correction on the decoder side.

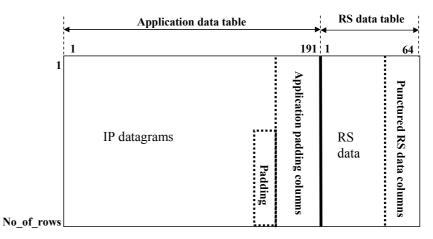


Fig. 5: MPE-FEC frame [4]

After the above-mentioned 191 columns in the application table have been filled, a 64-byte checksum can be calculated for each of the rows and inserted, row by row, into the RS data table. The overhead resulting from the FEC encoding can be reduced by omitting the RS columns. This procedure is called puncturing.

One MPE-FEC frame is transmitted in each time slice burst. The use of MPE-FEC sections is optional for each of the DVB-H services.

MPE signaling

The following excerpt from the implementation guidelines [5] will show the steps involved in MPE signaling:

"All IP platforms supported on a particular transport stream are announced in NIT (or optionally in BAT, in which case NIT announces the BAT). To access an INT sub_table on a particular transport stream, the below described procedure may be used:

- Search NIT for linkage_descriptor with linkage_type 0x0B.
 - If found, the descriptor announces the service_id and platform_id for each available INT sub_table.
 - If not found, search for linkage_descriptor with linkage_type 0x0C.

- If found, the descriptor announces the BAT where linkage_descriptor with linkage_type 0x0B is available.
- If not found, INT is not available, and IP services (if any) on the actual DVB network cannot be accessed.
- Search PMT sub_table using the service_id from the step 1.
- The PMT announces the elementary stream carrying a particular INT sub_table.

Note that selecting one of the INT sub_tables effectively selects the associated IP platform.

INT announces access parameters for IP streams, and associates each IP stream with an IP datagram stream. The access parameters consist of parameters to identify the DVB network (network_id), the transport stream (original_network_id and transport_stream_id), the DVB service (service_id) and the component (component_tag).

Selecting IP platform is typically done by the user. To receive an IP service, INT sub_table of the IP platform supporting the service is checked, to get access parameters for each of the IP datagram streams carrying the elements of the service.

Using the access parameters, receiver searches for the PMT sub_table (identified by the service_id), which then announces the elementary stream (identified by the component_tag) carrying the requested IP stream. On the elementary stream, the receiver typically would filter the IP stream based on IP address."

For a detailed description of the DVB-H transport stream, see [1].

6 R&S[®]DVM Analysis of DVB-H Signaling

The R&S[®]DVM family provides a broad range of functions for comprehensive monitoring and analysis of the above-referenced characteristics of the DVB-H transport stream.

🚾 Rohde & Schwarz DVM MPEG	2 Monitoring System		_ 8 ×
Eile <u>V</u> iew Setup <u>H</u> elp			
SITE	🛛 🔗 🛛 Interpreter * Table / PES Interpre	ter @ 00-90-b8-14-02-43 \ DVB-H Configuration DVB [Config (DVB)]	_
🤰 Rohde & Schwarz DVM	Packet Interpreter Table / PES Interpreter	Header Map TS List	
÷ = 00-90-b8-14-02-43	IP/MAC Notification Section		-
LO DVB-H	Table id	8 bit 0x4C (76)	Start
•••••	Section syntax indicator	1 bit 1	
	reserved (future use)	1 bit 0x1 2 bit 0x3	
INPUT	Section length	12 bit 96	
00-90-b8-14-02-43	Action type	8 bit 0x01 (1) location of IP/MAC streams in DVB networks	
😏 DVB-H	Platform id hash	8 bit 0x2E (46)	Stop
- TS (ID 1999)	reserved	2 bit 0x3	0.00
🖶 🧰 PSI/SI	Version number	5 bit 0	
Service 1 (DVB-H 1)	Current/next indicator	<pre>l bit l sub table is currently applicable</pre>	
- Uideo MPEG2 (PID 256)	Section number	8 bit 0	
	Last section number	8 bit 0	
🐴 Audio MPEG2 (PID 272)	Platform id	24 bit 0x002C02 (11266)	Update
- CData IP/MAC notification		8 bit 0x00 (0) first action	
– 🗓 Data DVB-H (PID 303)		4 bit 0xF	
🦕 🐻 Null Packets (PID 8191)	Platform descriptors loop length	12 bit 32	
_	Platform Descriptors		
	Platform Provider Name Descripto		
	Descriptor tag Descriptor length	8 bit 0x0D (13) 8 bit 18	
	ISO 639 language code	3 char eng	
	Platform provider name	15 char Rohde 6 Schwarz	
	Platform Name Descriptor	15 chde Konde e Schedez	
	Descriptor tag	8 bit 0x0C (12)	
	Descriptor length	8 bit 10	-
	ISO 639 language code	3 char eng	
	Platform name	7 char DV-DVBH	
	1st Notification		
	reserved (future use)	4 bit 0xF	
	Target descriptors loop length	12 bit 34	
	Target Descriptors		
	Target IPv6 Address Descriptor		
	Descriptor tag	8 bit 0x0A (10)	
	Descriptor length	8 bit 32	
	IPv6 addr nask	32 bit 0xFFFFFFFF (255.255.255.255)	
		32 bit 0xFFFFFFFF (255.255.255.255)	Filter
	-	32 bit (200,200,200,200)	للمسالة
	J	Snapshot Stopped	
~	2.		
(B)	**		
Topology Mo	onitoring Interpreter Av	dvanced Data Broadcast Streaming	
ropology Mc	a koning interpreter Ar	avanosa pasa biuducast Stiediling	

Displaying DVB-H contents

Fig. 6: DVB-H Signaling in the Transport Stream

As can be seen in the above screenshot, in the section marked in red, the contents of the transport stream are listed in a tree structure. In addition to the standard-specific tables (PSI/SI), all available programs are shown as folders.

The example above shows a program with additional data DVB-H content and standard encoded MPEG-2 audio and video.

In accordance with the standard, the IP/MAC notification table is interpreted as a service, which is why the INT is not listed under PSI/SI in the Service folder.

As noted in Section 4, the network information table (NIT), the IP MAC notification table (INT), and the program map table (PMT) have special significance for analyzing the signaling of the multiprotocol encapsulation (MPE) specified in the DVB-H standard.

The following steps will show how the R&S[®]DVM can be used to ensure correct signaling of the service.

The tables mentioned can be interpreted with the Interpreter application.

Fig. 7: Interpreter area

Interpretation of the PMT table

3rd Stream	
Stream type	8 bit 0x05 (5) Private Sections
reserved	3 bit 0x7
Elementary PID	13 bit 0x0120 (288)
reserved	4 bit 0xF
ES info length	12 bit 10
Data Broadcast Id Descriptor	
Descriptor tag	8 bit 0x66 (102)
Descriptor length	8 bit 8
Data broadcast id	16 bit 0x000B (11) IP/MAC Notification Table
Platform ID data length	8 bit 5
Platform id	24 bit 0x002C02 (11266)
Action type	8 bit 0x01 (1) location of IP/MAC streams in DVB netw
reserved	2 bit 0x3
INT versioning flag	1 bit 0
INT version	5 bit 0
4th Stream	
Stream type	8 bit 0x90 (144) DVB-H MPE and MPE-FEC sections
reserved	3 bit 0x7
Elementary PID	13 bit 0x012F (303)
reserved	4 bit 0xF
ES info length	12 bit 7
Data Broadcast Id Descriptor	
Descriptor tag	8 bit 0x66 (102)
Descriptor length	8 bit 2
Data broadcast id	16 bit 0x0005 (5) Multiprotocol Encapsulation
Stream Identifier Descriptor	
Descriptor tag	8 bit 0x52 (82)
Descriptor length	8 bit 1
Commonent tag	8 hit. 0x26 (38)

Fig. 8: PMT table

The program map table (PMT) contains references to all elementary streams of the selected service. As shown above, video, audio, and data ES references are listed in the stream loops.

Stream type, an 8-bit indicator, signals the contents of the elementary stream. Some examples:

0x01: MPEG-1 video

0x02: MPEG-2 video

0x05: private sections

0x90: DVB-H MPE and MPE-FEC sections

The entries for **Elementary PID** refer to the packet identifiers (PID) of the transport stream packets associated with each of the elementary streams.

For data services, the elementary stream is referenced via **Data Broadcast ID**, for example:

0x005: Multiprotocol encapsulation

0x00B: INT table

Interpretation of the INT table

Platform Descriptors Platform Provider Name Descriptor					
Descriptor tag	8 bit	OxOD (13)			
Descriptor length	8 bit	18			
ISO 639 language code	3 char	enq			
Platform provider name	15 char	Rohde & Schwarz			
Platform Name Descriptor					
Descriptor tag	8 bit	0x0C (12)			
Descriptor length	8 bit	10			
ISO 639 language code	3 char	eng			
Platform name	7 char	DV-DVBH			
1st Notification					
reserved (future use)	4 bit	OxF			
Target descriptors loop length	12 bit	34			
Target Descriptors					
Target IPv6 Address Descriptor					
Descriptor tag	8 bit	0x0A (10)			
Descriptor length	8 bit	32			
IPv6 addr mask	32 bit	OxFFFFFFFFF (255.255.255.255)			
	32 bit	OxFFFFFFFFF (255.255.255.255)			
	32 bit	OxFFFFFFFFF (255.255.255.255)			
		OxFFFFFFFFF (255.255.255.255)			
IPv6 addr	32 bit				
		0x00000000 (0. 0. 0. 0)			
	32 bit	0x00000000 (0. 0. 0. 0)			
	32 bit	Ox000000AB (0. 0. 0.171)			
reserved (future use)	4 bit	OxF			
Operational descriptors loop length	12 bit	11			
Operational Descriptors					
IP/MAC Stream Location Descriptor					
Descriptor tag	8 bit	Ox13 (19)			
Descriptor length	8 bit	9			
Network id	16 bit	0x07D0 (2000)			
Original network id					
Transport stream id		0x07CF (1999)			
Service Id		0x0001 (1)			
Component tag	8 bit	0x26 (38)			
CRC 32	32 bit	0x3435784E CRC ok			

Fig. 9: IP/MAC notification (INT) table

As described under "Multiprotocol encapsulation (MPE)" (Section 4), the elementary streams in DVB-H are integrated into the DSM-CC section of the transport stream via IP packets.

The INT table takes on a kind of signaling function for the transmitted IP packets. Fig. 9 shows the specified destination IP address (•) for the IP contents which are transmitted via the selected service (•).

Network id, Transport stream id and Service ID form a unique triplet, which identifies a service consisting of one or more PIDs.

Interpretation of the NIT table

In general, the network information table describes all physical parameters of a DVB transmission channel.

Transport descriptors length Service List Descriptor	12 bit	23	
Descriptor tag	8 bit	0x41 (65)	
Descriptor length	8 bit		
Service List			
Service id	16 hit	0x0001 (1)	
Service type	8 hit		digital television service
Terrestrial Delivery System Descri	ntor		
Descriptor tag		0x5A (90)	
Descriptor length	8 bit		
Centre frequency	32 hit.	0x02DF7940	482.000000 MHz
Bandwidth	3 bit	0	8 MHz
Priority	l bit	1	high priority
Time Slicing indicator	l bit	0	Time Slicing used
MPE-FEC indicator	l bit	0	MPE-FEC used
reserved (future use)	2 bit	0x3	
Constellation	2 bit	2	64-QAM
Hierarchy information	3 bit	4	non-hierarchical, in-depth interleaves
Code rate (HP stream)	3 bit	1	code rate 2/3
Code rate (LP stream)	3 bit	1	code rate 2/3
Guard interval	2 bit	2	1/8
Transmission mode	2 bit	1	8k mode
Other frequency flag	l bit	0	no other frequency in use
reserved (future use)		OxFFFFFFFF	
Fime Slice and FEC Identifier Desc	riptor		
Descriptor tag	8 bit	0x77 (119)	
Descriptor length	8 bit	3	
Time Slizing	l bit	1	used
MPE-FEC	2 bit	1	used with Reed-Solomon (255,191,64)
reserved (future use)	2 bit	0x3	
Frame Size	3 bit	3	2048 kbits 1024 rows
Max Burst Duration	8 bit	255	5120 ms
Max Average Rate	4 bit	4	256 kbps
Time Slice FEC Id	4 bit	0x0 (0)	
RC 32	32 bit	0x18B01723	CRC ok

Fig. 10: Network information table (INT)

In our case, the NIT contains the time_slice_fec_identifier descriptor (green). It provides basic non-dynamic information on, for example maximum burst duration, burst size and FEC in use.

7 Time-Slicing - R&S[®]DVM DVB-H Time Slice Analyzer

The DVB-H time slice analyzer (\bullet) can be selected in the "Streaming" application of the R&S[®]DVM. When "Start" (\bullet) is pressed, the R&S[®]DVM DVB-H time slice analyzer (\bullet) opens in a separate window.

Burst Timing MPE FEC			TS Bit Rate [bit/s]	
	40000 kbiųs		1.5 bit Hate (bit 4)	▲ VLC media player File View Settings Audio Video Navigation △ III ■ IM « I >> >> III Ξ ● III ■ IM « I >> >> III Ξ
-4200 ms	249 kbit/s BURST NUMB		0 ms	
Burst Duration: Burst Cycle-Time: Maximum Signalled Delt Minimum Signalled Delta Burst Bit Rate: Burst Peak Bit Rate: Constant Bit Rate: Burst Total Size:	a_T Margin: 22.5 a_T Margin: 12.3 299 315 249	ms 1 ms 565 ms 271 ms 7.049 kbä/s 8.400 kbä/s 8.400 kbä/s 8.275 kbi/s 822 Bytes	Reset	k1.00 http://@:1234 C Video Player C Elementary Stream Analyzer C DVB-H Time Slice Analyzer
Burst IP Payload:		316 Bytes Destination: Localhost	Close	C Write to File Browse

Fig. 11: Time slice analyzer

The window consists of two panes:

- Burst Timing measured values and diagrams pertaining to burst timing and data rates
- MPE FEC Analysis measured values such as power savings, burst timing and data rates (includes the values from the Burst Timing pane)

In the following sections, we will discuss the measured values that are displayed in the window panes.

Measurement parameters

Various DVB-H transmission parameters can be determined under ETSI EN 101 192; these parameters are displayed on the R&S[®]DVM. But the R&S[®]DVM also provides other functionalities.

2

Burst Timing

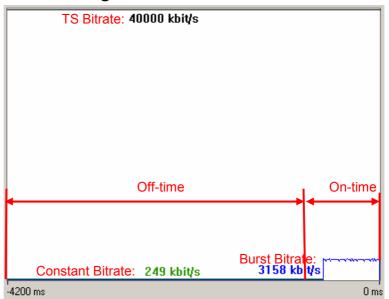


Fig. 12: Burst timing diagram

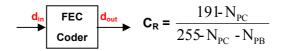
The above diagram shows the burst structure of the incoming transport stream. Labels for the measured values are shown in red.

The following sections of this document contain a detailed description of the measured burst timing and data rate values which are shown both in the diagram and in the list below. The measured values listed under "Burst Timing" can also be found as a subset under "MPE-FEC analysis."

MPE-FEC analysis

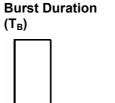
The parameters displayed are categorized under FEC, power save function, bandwidth, and transmission.

FEC:


FEC: Number of Rows: Number of Padding Colur Number of Puncturing By Burst FEC Code Rate:	
FEC	Indicates if forward error correction of the MPE sections is being used.
Number of Rows (N _R)	If FEC is activated, the number of rows of the MPE- FEC frame is shown here.
Number of Padding Columns (N _{PC})	If FEC is activated, the number of padding columns of the MPE-FEC frame is shown here.

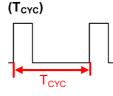
Number of (N_{PB})

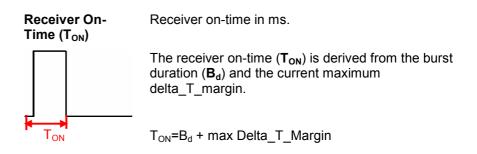
If FEC is activated, the number of puncturing bytes **Puncturing Bytes** of the MPE-FEC frame is shown here.

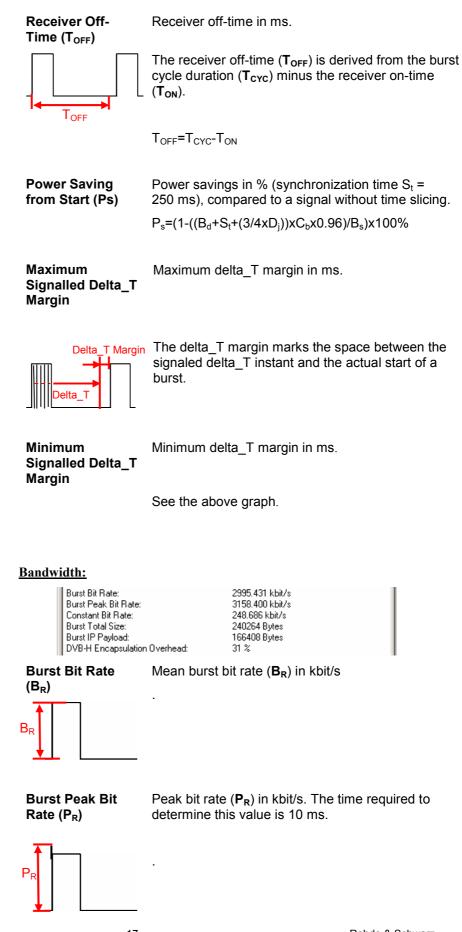

Burst FEC Code Rate (C_R)

If FEC is activated, the burst FEC code rate is shown here.

Power Save Function:


Burst Duration: Burst Cycle-Time: Receiver On-Time: Receiver Off-Time: Power Saving from Start:	642 ms 7523 ms 665 ms 7047 ms 88 % (Synchronization Time = 250 ms)
Maximum Signalled Delta_T Margin: Minimum Signalled Delta_T Margin:	23.675 ms 12.618 ms


Burst duration in ms



Burst Cycle-Time Burst cycle time in ms.

The burst cycle time (T_{CYC}) indicates the time interval between the starting points of two bursts.

Mean bit rate in kbit/s

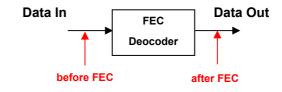
C_B

The equivalent bit rate $(\boldsymbol{C}_{\boldsymbol{B}})$ for a continuous data stream.

Total burst size in bytes. $B_T = B_R \times T_B$

Burst IP Payload (B_{IP})

DVB-H Encapsulation Overhead (E_{ov}) Overhead in % resulting from DVB-H encapsulation.


Size of the burst's IP payload in bytes.

$$\mathbf{E}_{\text{ov}} = \frac{\mathbf{B}_{\mathrm{T}} - \mathbf{B}_{\mathrm{IP}}}{\mathbf{B}_{\mathrm{T}}} \mathbf{x} \text{ 100\%}$$

Transmission:

Erroneous Rows before FEC decoding:	0
Erroneous Rows after FEC decoding:	0
Frame Error Rate (FER):	0
MPE Frame Error Rate (MFER):	0
Correct IP Packets before FEC:	122
Erroneous IP Packets before FEC:	0
IP Packet error rate before FEC:	0
IP Packet error rate before FEC from start:	0
Correct IP Packets after FEC:	122
Erroneous IP Packets after FEC:	0
IP Packet error rate after FEC:	0
IP Packet error rate after FEC from start:	0

In order to determine the transmission path quality, the R&S[®]DVM provides a function to analyze various data structures for errors and to indicate whether or not an error correction function can remove the errors.

General definition of the error rate: $e = \frac{IU_{erroneous}}{IU_{total}}$;

where IU = units of information

Erroneous Rows before FEC decoding	Number of erroneous MPE-FEC rows before FEC decoding
Erroneous Rows after FEC decoding	Number of erroneous MPE-FEC rows after FEC decoding
Frame Error Rate from Start	Frame error rate from the start of the measurement, before FEC decoding
MPE Frame Error Rate from Start	Frame error rate from the start of the measurement, after FEC decoding
Correct IP Packets before FEC	Number of error-free IP packets before FEC decod- ing
Erroneous IP Packets before FEC	Number of erroneous IP packets before FEC de- coding
IP Packet Error Rate before FEC	IP packet error rate before FEC decoding
Correct IP Packets after FEC	Number of error-free IP packets after FEC decoding
Erroneous IP Packets after FEC	Number of erroneous IP packets after FEC decod- ing
IP Packet Error Rate after FEC	IP packet error rate after FEC decoding

8 Multiprotocol Encapsulation (MPE) – R&S[®]DVM Data Broadcast Analysis

The data broadcast analysis provides versatile features for the analysis of the data transmitted via MPE; the various steps of analysis correspond to the individual encapsulation steps.

Fig. 13: Data broadcast analysis

When the user clicks a data DVB-H service, various transmission parameters/data are displayed, depending on which area was selected for analysis.

Data broadcast analysis - GUI

The Protocol (**●**), Content (**e**), and Content Details (**●**) panes are displayed in all analysis areas, i.e. Overview, Interpreter, Raw Data, and Carousel Timing.

Overview Interpreter Raw Data Carousel Timing

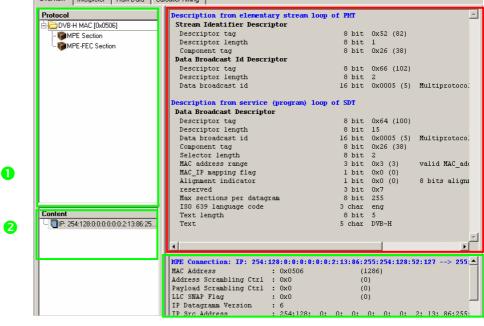


Fig. 14: Data broadcast analysis, GUI

B

Protocol (1)

The Protocol pane of the data broadcast analysis shows the data transmission protocol. For DVB-H analysis, a folder structure labeled "DVB-H MAC" is displayed. In the contents of the folder, the DSM-CC sections are grouped into "MPE Section" and "MPE FEC Section".

Content (2)

The Content pane shows the content of the data transmitted via the DSM-CC sections. DVB-H data is transported via IP packets, and therefore specific packets are displayed here. IP packets are identified by originating and destination IP address (in accordance with Ipv6).

Content Details (8)

The lower section of the screen shows further details with respect to the transported IP content and correlating, DVB-H-specific information.

The following sections will discuss in detail the various analysis features of the R&S[®]DVM, which are available in the Overview, Interpreter, and Raw Data views.

Data broadcast analysis features

The analysis window, shown in red in the picture on page 21, provides the user with various analysis functions for the DVB-H elementary stream.

Overview

Description from elementary stream loop of Stream Identifier Descriptor Descriptor tag			
-	8 bit		
Descriptor tag	8 bit		
		0x52 (82)	
Descriptor length	8 bit	1	
Component tag	8 bit	0x26 (38)	
Data Broadcast Id Descriptor			
Descriptor tag	8 bit	0x66 (102)	
Descriptor length	8 bit	2	
Data broadcast id	16 bit	0x0005 (5)	Multiprotocol Encapsulation
Description from service (program) loop of	- SDT		
Data Broadcast Descriptor			
-	0 1.44	0.4 (100)	
Descriptor tag		0x64 (100)	
Descriptor length	8 bit		·····
			Multiprotocol Encapsulation
Component tag		0x26 (38)	
Selector length	8 bit		
MAC address range	3 bit	0x3 (3)	valid MAC_address byte are bytes 6 to 4
MAC_IP mapping flag	l bit	0x0 (0)	
Alignment indicator	l bit	0x0 (0)	8 bits alignment
reserved	3 bit	0x7	
Max sections per datagram	8 bit	255	
ISO 639 language code	3 char	eng	
Text length	8 bit	5	
Text	5 char	DVB-H	

Fig. 15: Data broadcast analysis, Overview view

The view shows the references within the transport stream which point to the active DVB-H elementary stream. That allows a quick overview of the signaling of the elementary stream.

Interpreter

Table: datagram section (MPE) f	or DVB-H			
table id	8 bit	0x3E	DSM CC sections wi	ith private data
section_syntax_indicator	l bit	1	_	
private_indicator	l bit	0		
reserved	2 bit	0x3		
section_length	12 bit	1377		
Section (MPE) for DVB-H				
MAC_address_6	8 bit	0x06		
MAC_address_5	8 bit	0x05		
reserved	2 bit	0x3		
payload_scrambling_control	2 bit	0		
address_scrambling_control	2 bit			
LLC_SNAP-flag	l bit			
current_next_indicator	l bit			
section_number	8 bit			
last_section_number	8 bit			
delta_t	12 bit		in units of 10 ms	
table_boundary	l bit			
frame_boundary	l bit			
address		0x00000	FEC	
IP_datagram	-	shown in Ra		
CRC_32	32 bit	OxED5601F5	CRC32 ok	

Fig. 16: Data broadcast analysis, Interpreter view

When the corresponding section (MPE or MPE-FEC) is selected, the DSM-CC header for DVB-H can be displayed. The individual sections can be differentiated as follows:

MPE: table_id = 0x3E (IP data)

MPE-FEC: table_id = 0x78 (Reed-Solomon data)

As was described in Section 4, realtime parameters (green) are transmitted in the sections. They tell the receiver when it can go off-line:

- delta_t: Time to start of next burst from 1st byte of this DSM-CC section
- table_boundary: If FEC in use, this is set to 1 for the last sectio of MPE data; i.e. all further sections in this burst must be FEC data
- frame_boundary: If FEC in use, then set to 1 for the last FEC section in this burst
- address: row.column address of the section data in the application data table

Raw data

0:	0xBC	0x97	$0 \times E7$	0x6A	0x26	$0 \times 1 E$	0xAE	0x3B	0x3B	0x06	j;.
10:	OxAA	$0 \times 0 E$	0x4B	0x5F	0xF9	0x41	0x67	0x87	0x5A	0x14	KAg.Z.
20:	0xB5	0xE3	0x67	$0 \times 0 D$	0xA3	0x9D	0xA1	0x33	$0 \mathrm{xED}$	0xE5	g3
30:	0x47	0xCA	$0 \times E0$	0x7B	0x32	0xF3	0xB2	0x14	0x39	0x85	G{29.
40:	OxFF	$0 \times F9$	$0 \mathbf{x} 7 \mathbf{B}$	0x6D	0xEE	0x41	0x6A	0xB8	0xC7	0x90	{m.Aj
50:	0x65	0x1E	$0 \mathrm{x} \mathrm{C} \mathrm{D}$	0x5F	0x14	0x13	0x42	0x68	0x71	0xF9	eBhq.
60:	0x4F	0x51	$0 \times 0 B$	OxDC	0x1E	0x6F	0xA7	0x4D	0x9D	0xD8	0Qo.M
70:	0x0A	$0 \times B0$	$0 \times 5 E$	0xCA	0x0F	$0 \mathbf{x} \mathbf{E} \mathbf{D}$	0xA4	0x8C	0xD1	0x59	^Y
80:	0x26	0x9C	0x6B	0x15	0x19	0xD4	$0 \mathrm{x} \mathrm{FC}$	0xF1	0x75	0x3B	
90:	0x25	0xEC	0xFl	0x05	0x74	0x54	0x10	0x4A	0xD3	0x63	%tT.J.c
100:	0x2F	$0 \times 0 E$	0xC6	0x1F	0xE8	$0 \times 0 E$	0 xDB	0xD1	0x0B	0x69	/i
110:	OxFF	0x01	0xF4	0x97	0x3D	0x85	0xD4	0xC1	0x45	0x10	=E.
120:	0x77	$0 \mathbf{x} \mathbf{C} \mathbf{C}$	0x23	0xE4	0x98	0x25	0x11	0x03	0x3F	0x83	₩.#%?.
130:	0xD3	$0 \mathrm{x} \mathrm{D} 0$	0xE3	0x28	0xEB	0x16	0x91	0x39	0xD8	0x81	(9
140:	OxEF	0x40	0xC7	0xC1	0x8A	0x80	0xD5	$0 \mathrm{x} \mathrm{FE}$	0x83	0x92	.0
150:	0x66	0xB8	0x46	0x8B	0x72	$0 \mathrm{x} 7 \mathrm{E}$	$0 \times AC$	$0 \times F8$	0x91	0x3F	f.F.r~?
160:	0x17	0x6D	0x41	0x3B	0x57	0x9E	0x4D	0x26	0x3E	0xE7	.mA;W.Ma>.
170:	0xFA	0x12	$0 \mathbf{x} 2 \mathbf{B}$	0x7E	0x79	0x53	0xC7	0x2F	0xE1	0x56	+~yS./.V
180:	0xE2	$0 \mathrm{xDF}$	0x46	0x91	0x46	OxCA	$0 \times F7$	0x43	0x49	0x5A	F.FCIZ
190:	0x0E	0x59	0x67	0x04	0x28	0x41	$0 \times F6$	0x10	0x06	0x74	.Yg.(At
200:	0x45	0xE5	0x9B	0xF5	0xC4	0xA6	0x4A	0x8D	0x09	0x5D	EJ]
210:	$0 \times F1$	$0 \times F5$	0xC3	0xBA	0x6D	0x8C	0x54	0xA9	0xA5	0xD9	m.T
220:	0x74	0xA2	0x57	0x0A	0xA0	0x97	0xAB	0x7C	0xD9	$0 \times DF$	t.W
230:	0x31	0x89	0xAB	0x2B	0x89	OxAC	0x6A	0x69	0x09	0xBF	l+ji
,940.	0	01430	0.757	012	0.,00	01701	0	0.400	024	002	_T.TA

Fig. 17: Raw Data view

The Raw Data view shows the payload of the DSM-CC sections in ASCII format.

9 Abbreviations

ASCII	American Standard Code for Information Interchange
BAT	Bouquet Association Table
COFDM	Coded Orthogonal Frequency Division Multiplexing
DSM-CC	Data Storage Media Command and Control
DVB-H	Digital Video Broadcasting for Handhelds
DVB-T	Digital Video Broadcasting for Terrestrial Applications
EN	European Norm
ES	Elementary Stream
ETSI	European Telecommunications Standards Institute
FEC	Forward Error Correction
GUI	Graphical User Interface
IEC	International Electrotechnical Commission
INT	IP/MAC Notification Table
IP	Internet Protocol
ISO	International Organization for Standardization
MAC	Media Access Control
MPE	Multi Protocol Encapsulation
MPEG	Moving Pictures Experts Group
NIT	Network Information Table
PID	Packet Identifier
PMT	Program Map Table
PSI	Program Specific Information
RF	Radio Frequency
RS	Reed-Solomon
SFN	Single Frequency Network
SI	System Information
TS	Transport Stream
UDP	User Datagram Protocol

10 Bibliography

- [1] Fischer, Walter; Dürport, Werner; Kirchhoff, Ralph; Tobergte, Thomas (2005). Application Note 1MA91_0E. Test of DVB-H-Capable Mobile Phones in Development and Production. Munich: Rohde & Schwarz GmbH & Co. KG website: http://www.rohdeschwarz.com.
- [2] Fischer, Walter (2005). Digital Television. A Practical Guide for Engineers. Berlin: Springer.
- [3] International Organization for Standardization (Ed.) (2005). International Standard ISO/IEC 13181-6: Information technology - Generic coding of moving pictures and associated audio information - Part 6: Extensions for DSM-CC. International Organization for Standardization.
- [4] European Telecommunications Standards Institute (Ed.) (2001). ETSI EN 301 192 Digital Video Broadcasting (DVB); DVB specification for data broadcasting Sophia Antipolis Cedex, France: European Telecommunications Standards Institute.
- [5] European Telecommunications Standards Institute (Ed.) (2005). ETSI TR 102 377. Digital Video Broadcasting (DVB); DVB-H Implementation Guidelines. Sophia Antipolis Cedex, France: European Telecommunications Standards Institute.

11 Additional Information

Our application notes are revised and updated from time to time. To check if a new version is available, please visit <u>http://www.rohde-schwarz.com</u>.

Please direct any comments or suggestions concerning these application notes to <u>Broadcasting-TM-Applications@rsd.rohde-schwarz.com</u>.

© European Telecommunications Standards Institute 2005. © European Broadcasting Union 2005. Further use, modification, redistribution is strictly prohibited. ETSI standards are available from <u>http://pda.etsi.org/pda/</u> and http://etsi.org/services products/freestandard/home.htm

12 Ordering Information

R&S[®] DVM50	MPEG-2 Monitoring System	2085.1900.02
R&S [®] DVM-K1	Additional TS Input	2085.5211.02
R&S [®] DVM50-K10	In-Depth Analysis	2085.5434.02
R&S [®] DVM-K11	Data Broadcast Analysis	2085.5311.02
R&S[®] DVM100	MPEG-2 Monitoring System	2085.1600.02
R&S [®] DVM120	MPEG-2 Monitoring System	2085.1700.02
R&S [®] DVM-B1	Analyzer Board	2085.3283.02
R&S [®] DVM-K1	Additional TS Input	2085.5211.02
R&S [®] DVM-K10	In-Depth Analysis	2085.5228.02
R&S [®] DVM400 R&S [®] DVM400-B1 R&S [®] DVM-K1 R&S [®] DVM-K2 R&S [®] DVM400-B2 R&S [®] DVM400-B3	Base Unit Analyzer Additional TS Input TS Capture Data Broadcast Analysis TS Generator Upgrade TS Recorder up to 90 Mbit/s	2085.1800.02 2085.5505.02 2085.5211.02 2085.5234.02 2085.5311.02 2085.5511.02 2085.5528.02
R&S [®] DVM400-B4 R&S [®] DV-ASC R&S [®] DV-DVBH R&S [®] DV-HDTV R&S [®] DV-TCM R&S [®] DVM-DCV	Upgrade TS Recorder up to 214 Mbit/s Advanced Stream Combiner DVB-H Stream Library HDTV Sequences Test Card M Streams Documentation of Calibration Values Service Manual	2085.5534.02 2085.8804.02 2085.8704.01 2085.7650.02 2085.7708.02 2082.0490.29 2085.1839.02

ROHDE & SCHWARZ GmbH & Co. KG · Mühldorfstraße 15 · D-81671 München · Postfach 80 14 69 · D-81614 München · Tel. (+4989) 4129 -0 · Fax (+4989) 4129 - 13777 · Internet: <u>http://www.rohde-schwarz.com</u>

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.